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AGENDA

Part 1: Active Learning for Text Classification
• Introduction to Active Learning and Text Classification

• State of the Art and Recent Trends

Part 2: Small-Text: Active Learning for Text Classification
• Introducing the small-text library

• Code Example: Active Learning to Build a News Classifier

Part 3: Practical Challenges when using Active Learning with LLMs
• Practical Challenges
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PART 1: ACTIVE LEARNING FOR
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THIS PRESENTATION
Active Learning

Practical ChallengesText Classification
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THIS PRESENTATION
Large Language Models
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SUPERVISED NATURAL LANGUAGE PROCESSING

Data Supervised Tasks

Text Classification

Named Entity Recognition

Relation Extraction

Machine Translation

... (non exhaustive)

Labels
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TEXT CLASSIFICATION

Text Classification: For each xi in a dataset X predict class labels yi. The number of classes is
given by c.

• binary: predict yi ∈ {0, 1}

• multi-class: predict yi ∈ {0, 1, ..., c – 1}

• multi-label: predict yi ⊆ {0, 1, ..., c – 1}
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ACTIVE LEARNING
Active Learning: minimize the labeling costs of training data acquisition while maximizing a
model’s performance (increase) with each newly labeled problem instance.

 
user / oracle active learner

unlabeled instances

labels

A B C
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ACTIVE LEARNING

Query Strategy: Decides which instances will be labeled next.

Selected Strategies
Prediction entropy (Roy and McCallum, 2001; Schohn and Cohn, 2000):

argmax
xi

[
–

c
∑
j =1

P( yi = j |xi) log P( yi = j |xi)
]

(1)

Breaking ties / Minimum margin (Scheffer et al., 2001; Luo et al., 2005):

argmin
xi

[
P( yi = k∗1 |xi) – P( yi = k∗2 |xi)

]
(2)
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ACTIVE LEARNING – UNCERTAINTY EXAMPLE

Prediction entropy
argmaxxi

[
– ∑

c
j =1 P( yi = j |xi) log P( yi = j |xi)

]
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ACTIVE LEARNING – UNCERTAINTY EXAMPLE

Breaking ties/Minimummargin
argminxi

[
P( yi = k∗1 |xi) – P( yi = k∗2 |xi)

]
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ACTIVE LEARNING – VECTOR SPACE
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ACTIVE LEARNING – EVALUATION
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ACTIVE LEARNING IN IN SOCIAL SCIENCES
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SO WHAT CAN ACTIVE LEARNING HELP YOU WITH?

Example: Text Classification

• Create a text classification model that generalizes to unseen data (inductive).

• Create model that annotates the rest of the corpus (transductive).

• Construct labeled corpora.

• Find inconsistencies in labeled corpora.

(Despite the absence of labeled data.)
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ACTIVE LEARNING APPLICATIONS FROM THE SOCIAL SCIENCES

Selected Applications

• Qualitative Content Analysis: support annotation efforts (Liew et al., 2014; Chen et al.,
2018; Wiedemann, 2019) and identify potentially mislabeled instances (Chen et al., 2018).

• Categorization: categorize or filter documents (Romberg and Escher, 2022).

• Sentiment Analysis: measure and evaluate subjectivity or sentiment (Liu, 2012; DiMaggio,
2015); possibly over time (Kahmann and Heyer, 2019).

• Literature Research: identify relevant literature or passages therein (Yu et al., 2018).
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STATE OF THE ART AND RECENT RESEARCH
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TRANSFORMER ERA AND BEYOND

• Considerable improvements on many text classification tasks have been achieved

• Trends in recent research (exluding LLMs which will be addressed later)
– query strategies (Margatina et al., 2021; Zhang and Plank, 2021; Gonsior et al., 2022; Schröder

et al., 2022)
– efficiency (Tsvigun et al., 2022a; Jukić and Snajder, 2023; Yu et al., 2022)
– semi-supervised learning (Tsvigun et al., 2022a; Yu et al., 2022)
– tooling ALToolbox (Tsvigun et al., 2022b), ALANNO (Jukić et al., 2023), small-text (Schröder

et al., 2023), ALAMBIC (Nachtegael et al., 2023)
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ACTIVE LEARNING: UNCERTAINTY IS A STRONG BASELINE
Revisiting Uncertainty-based Query Strate-
gies for Active Learning with Transformers
(Christopher Schröder, Andreas Niekler, Martin Potthast)

Experiment: Five query strategies were
evaluated on BERT, DistilRoBERTa and two
baselines (KimCNN and SVM).

Findings: Uncertainty-based query strategies
with transformers are strong on text classifica-
tion benchmarks.

Table: The “Mean Rank” columns show the mean rank when
ordered by mean accuracy (Acc.) after the final iteration and by
overall AUC. The “Mean Result” columns show the mean accuracy
and AUC. Adopted and adapted from (Schröder et al., 2022).

Model Strategy
Mean Rank Mean Result

Acc. AUC Acc. AUC

SVM PE 1.80 2.60 0.764 0.663
BT 1.60 1.60 0.767 0.697
LC 3.00 2.60 0.751 0.672
CA 5.00 5.00 0.667 0.593
RS 3.00 2.60 0.757 0.686

KimCNN PE 1.60 2.40 0.818 0.742
BT 1.60 2.00 0.818 0.750
LC 3.80 2.80 0.810 0.732
CA 3.80 4.80 0.793 0.711
RS 3.60 2.40 0.804 0.749

BERT PE 2.40 2.40 0.909 0.859
BT 2.00 1.60 0.914 0.873
LC 2.20 3.80 0.917 0.866
CA 2.80 2.60 0.916 0.872
RS 5.00 4.00 0.899 0.861
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ACTIVE LEARNING: UNCERTAINTY IS A STRONG BASELINE
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ACTIVE LEARNING: CONTRASTIVE REPRESENTATION LEARNING

• SetFit (Tunstall et al., 2022): with
contrastive representation fine-tuning,
transformer models can be even more
sample efficient

• Steeper learning curves with a similar
final classification performance
(Schröder et al., 2023) (in a comparison
that favored vanilla BERT)

BERT
SetFit
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An exemplary learning curve showing the difference in test accu-
racy for breaking ties on the TREC dataset, comparing BERT and
SetFit. The tubes represent the standard deviation across five
runs. Adopted from (Schröder et al., 2023).
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ACTIVE LEARNING AND LARGE LANGUAGE MODELS

• LLMs can do remarkably well without any additional labels:
– FreeAL (Xiao et al., 2023b) and LLMAAA (Zhang et al., 2023a) use the LLM as an annotator to

train smaller LMs
– In-context learning with samples that are acquired by active learning (Margatina et al., 2023;

Mavromatis et al., 2023)

• Zero-shot has been reported to be very effective on simple sentiment classification tasks,
so that active learning is not even required (Zhang et al., 2023b)
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ACTIVE LEARNING AND LARGE LANGUAGE MODELS

• Problems with LLMs:
– LLMs require adequate hardware (costs ↑)
– More parameters increase training and inference time (turnaround times ↑)
– Current evaluations might be misleading due to dataset contamination

(Golchin and Surdeanu, 2023; Sainz et al., 2023)
– LLMs still have problems with some tasks (e.g., finer-grained sentiment) (Zhang et al., 2023b)
– Also, recent research claims that human labeling is still superior (Lu et al., 2023)

→My prediction: Smaller domain-specific models will likely be preferred.
→ Active learning might utilize LLMs for model distillation or for (semi-)automated labeling.
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PART 2: SMALL-TEXT – A LIBRARY FOR
ACTIVE LEARNING FOR TEXT CLASSIFICATION
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INTRODUCING SMALL-TEXT

� Code
github.com/webis-de/small-text

small-text (Schröder et al., 2023) is an
open source Python library for Active Learning
for Text Classification
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INTRODUCING SMALL-TEXT

� Code
github.com/webis-de/small-text

small-text (Schröder et al., 2023) is an
open source Python library for Active Learning
for Text Classification

Motivation:
• A typical active learning experiment can
quickly get very complex

• AL is inherently very modular, but combining
different components is often not

• Reproducibility and correctness
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OVERVIEW: SMALL-TEXT IN 2023

• Github: 502 stars / 550 commits / 7 releases (as of December 5th)
• Paper: Published at EACL23 (Best System Demonstration Award)
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SCOPE

• Goal: provide state-of-the-art active learning for text classification

• Target groups: researchers and practitioners

• Active Learning: 16 14 query strategies, 5 stopping criteria

• Integrates scikit-learn, PyTorch, and transformers

• Available via pip and conda, documentation, examples,
unit and integration testing

• Replicability & reproducibility (if applied correctly)
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UNIFIED INTERFACES

Active Learning Setup
ClassifierSVM, KimCNN, Transformer... least confidence, prediction

entropy, breaking ties, BALD,
CVIRS, CAL, BADGE, EGL,
BERT k-means, DAL, SEALS,
greedy coreset...

stabilizing predictions, overall
uncertainty, classification change,
predicted change of F-measure,
fixed budget

Query Strategy

Stopping Criterion

• Goal: Easily mix and match different components
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PACKAGE ARCHITECTURE

Core
active learner

Pytorch Integration Transformers Integration

dataset abstraction
classifiers
query strategies query strategies

dataset abstraction
classifiers

dataset abstraction
classifiers

required
optional
depends on

Installation

Packages
package

CPU GPU or CPU

• Modular architecture, open for extension

• CPU or GPU installation possible

• Except for the dataset abstractions, most parts of the code operate agnostic of
dataset and classifier

23 / 44



RELATED SOFTWARE
Name Active Learning Code

QS SC Text GPU Unit Language License Last Reposi-
Focus support Tests Update tory

JCLAL1 18 2 é é é Java GPL 2017 �

libact2 19 - é é Ë Python BSD-2-Clause 2021 �

modAL3 21 - é Ë Ë Python MIT 2022 �

ALiPy4 22 4 é é Ë Python BSD-3-Clause 2022 �

BaaL5 9 - é Ë Ë Python Apache 2.0 2023 �

lrtc6 7 - Ë Ë é Python Apache 2.0 2021 �

scikit-activeml7 29 - é Ë Ë Python BSD-3-Clause 2023 �

ALToolbox8 19 - Ë Ë Ë Python MIT 2023 �

small-text 16 14 5 Ë Ë Ë Python MIT 2023 �

Comparison between small-text and relevant previous active learning libraries. We abbreviated the number of query strategies
by “QS”, number of stopping criteria by “SC”, and the low-resource-text-classification framework by lrtc.

Publications: 1Reyes et al., 2018, 2Yang et al., 2017, 3Danka and Horvath, 2018, , 4Tang et al., 2019, 5Atighehchian et al., 2020,
6Ein-Dor et al., 2020, 7Kottke et al., 2021, 8Tsvigun et al., 2022a.
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LIBRARY VERSUS ANNOTATION TOOL

Of course, you can also “simply use” small-text for annotation. For example, argilla, a
platform for data-centric NLP and LLMs, provides a tutorial for integrating small-text:
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CODE EXAMPLE: WORDS OF THE DAY CORPUS
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WORDS OF THE DAY
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ACTIVE LEARNING APPLICATION: WORDS OF THE DAY

How to use small-text to perform a (simulated) active learning experiment?

Data

• Words of the Day corpus (“eng_news_2023”)

• Labels similar to AG News1: SPORTS, WORLD, BUSINESS, and SCITECH

• Gold labels: use article URL as a heuristic
e.g., https://newspaper.com/sports/

• Sample 200K sentences from articles with similar URL patterns

1http://groups.di.unipi.it/~gulli/AG_corpus_of_news_articles.html
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ACTIVE LEARNING APPLICATION: DATA EXPLORATION
Examples Class distribution

SPORTS Get the surgery and return midseason, or
play through pain?

WORLD Firefighters extinguish a car burned dur-
ing night clashes in the Alma district of
Roubaix, in northern France, on Friday.

BUSINESS It offloaded its environmental consulting
division last year in a move to reduce its
debt by more than one billion US dollars
(£805 million).

SCITECH For example, one of its two main instru-
ments, the craft’s Vis imager, was mostly
built in the UK.
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SMALL-TEXT: SETTING UP DATASET AND TOKENIZER

import pandas as pd
from transformers import AutoTokenizer

num_classes = 4
transformer_model = 'bert-base-uncased'

tokenizer = AutoTokenizer.from_pretrained(transformer_model)

df = pd.read_parquet('eng_news_2023_200K.parquet')
train_set_size = 180_000

1
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SMALL-TEXT: TRAIN AND TEST SPLIT (EXPERIMENT SCENARIO)

import numpy as np
from small_text import TransformersDataset, TransformerModelArguments

train = TransformersDataset.from_arrays(
df['text'][:train_set_size], df['label'][:train_set_size].values, tokenizer,
target_labels=np.arange(num_classes),
max_length=128

)

test = TransformersDataset.from_arrays(
df['text'][train_set_size:], df['label'][train_set_size:].values, tokenizer,
target_labels=np.arange(num_classes),
max_length=128

)

1
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SMALL-TEXT: SETTING UP CLASSIFIER AND QUERY STRATEGY

from small_text import BreakingTies, TransformerBasedClassificationFactory

model_args = TransformerModelArguments(transformer_model)

clf_kwargs = {'device': 'cuda', 'mini_batch_size': 64}
clf_factory = TransformerBasedClassificationFactory(

model_args,
num_classes,
kwargs=clf_kwargs)

query_strategy = BreakingTies()

1
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SMALL-TEXT: POOL-BASED ACTIVE LEARNING

from small_text import PoolBasedActiveLearner, random_initialization_balanced

active_learner = PoolBasedActiveLearner(clf_factory, query_strategy, train)

# Randomly select initial samples.
indices_initial = random_initialization_balanced(train.y, n_samples=10)

active_learner.initialize_data(
indices_initial,
train.y[indices_initial]

)

1
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SMALL-TEXT: POOL-BASED ACTIVE LEARNING

from sklearn.metrics import accuracy_score, f1_score

num_queries = 10
for i in range(num_queries):

# Query 25 samples per iteration.
indices_queried = active_learner.query(num_samples=25)

# Simulate user interaction here. Replace this for real-world usage.
y = train.y[indices_queried]
active_learner.update(y)

y_pred_test = active_learner.classifier.predict(test)

accuracy = accuracy_score(y_pred_test, test.y)
macro_f1 = f1_score(y_pred_test, test.y, average='macro')
print(f'Iteration {i + 1}: Test accuracy: {accuracy:.2f} / {macro_f1:.2f}')

1
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RESULT: LEARNING CURVES

→ A news classifier using 260 labeled instances built with less than 100 lines of code.
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SUMMARY AND FUTURE WORK
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SUMMARY AND FUTURE WORK

small-text provides easy-to-use modular active learning for text classification in Python.

Interested? Try it yourself.

• Use small-text to build new datasets or models

• Use small-text for your research

• Contribute to the Github repository
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FUTURE PLANS

Current version: 1.3.2 (August 19th)

• Active learning for token classification
v3.0.0+

• More "active learning" (query strategies)
• Additional classification functionality
• Convenience and usability
• Documentation and examples

v2.0.0+
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PART 3: PRACTICAL CHALLENGES WHEN
USING ACTIVE LEARNING WITH LLMS
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LANGUAGE MODEL INSTABILITY
Model Instability: When trained on only few instances of data, model performance exhibits a
large variance (Mosbach et al., 2021).

In the context of Active Learning:

• Especially prone to this due to
the inherent low-data scenario.

• Workaround: Reinitialize the
model before every iteration. Ac
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LIMITED CONTEXT LENGTH

Context Length: Transformer models operate on tokens.

• Attention mechanism: number of maximum input tokens is fixed.
(e.g., 512 for a BERT model (Devlin et al., 2019))

• This maximum token size is responsible for quadratic scaling and memory in the original
attention mechanism (Vaswani et al., 2017).

Several solutions have been proposed to extend this window:

• Among others: CogLTX (Ding et al., 2020), Longformer (Beltagy et al., 2020),
Attention sinks (Xiao et al., 2023a).
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HARDWARE RESOURCES
GPUs are required for most recent methods.

Runtime

• Even for “smaller” BERT-era models, experiments quickly get infeasible.

• Aggravated for active learning experiments: multiple configurations, multiple repetitions
per configuration.

• Turnaround time is a factor for active learning.

VRAM

• Often the limiting factor for the choice of model.
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RUNTIME OPTIMIZATIONS

Reduce training and/or inference time

• Smaller models (possibly distilled).

• Code compilation (GPU optimizations).

• Minimize data transfer between CPU and GPU.

Case Example (by Sebastian Raschka)
• Reduction in training time from 21.33 min to 8.25 min by switching to mixed precision training

reduced training time for a particular configuration.
Source: https://sebastianraschka.com/blog/2023/pytorch-faster.html
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MEMORY OPTIMIZATIONS

Reduce required VRAM

• Parameter-efficient fine-tuning

• Mixed or lower precision training.

• Use different optimization algorithm (e.g., instead of Adam).
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SUMMARY

• Practical obstacles shape experiments and applications (e.g., the choice of model).

• Knowledge about hardware and lower-level optimizations is beneficial.

• Multitude of different techniques exists that reduce required resources.

• Efficiency
– Larger models increase runtime. This is often undesirable.
– Take power usage into account: Green AI (Schwartz et al., 2020).
– Appropriateness: Is a 1T model needed for my dataset of 10k instances?
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OUTRO: TAKEAWAYS
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TAKEAWAYS

Part 1

• What is active learning? What are typical use cases?

• Recognize problems where active learning can be applied

Part 2

• Motivation and features of the small-text library

• Follow a minimal code example for an active learning experiment

Part 3

• Learn about practical challenges when using LLMs
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